

Bavarian Environment

Adency

Areal hydrological modelling of Bavaria within the cooperation project KLIWA Holger Komischke for Unit 81 Bavarian Environment Agency

Introduction

• climate change already had impacts on the water regime

flood at river Inn flowing into Danube (city of Passau) (August 2002) photo: Bavarian State Ministry of the Environment and Public Health

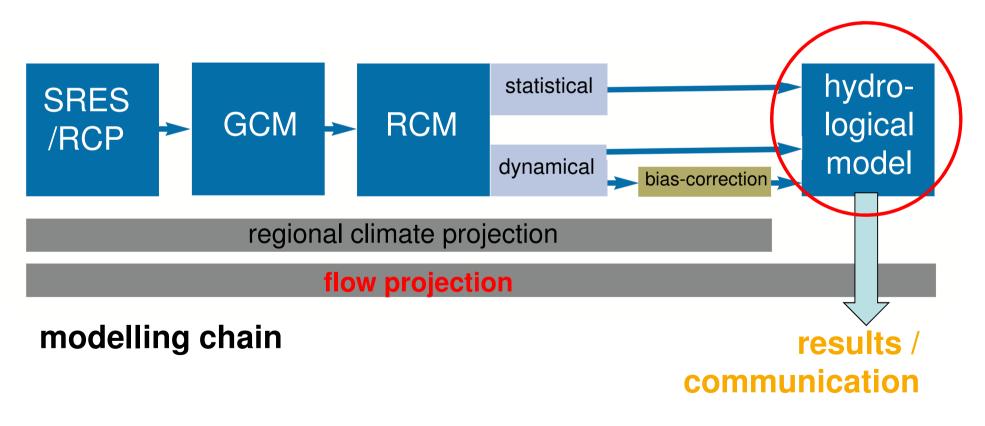

low flow at Isar river flowing into Danube (August 2003) photo: www.agroluftbild.de

- Key questions for the Bavarian Environmental Agency (LfU), institution of the Bavarian Water Management Administration:
 - What is state of knowledge about regional climate change and its impacts ?
 - What are the consequences of climate change for water management?
 - How secure are the different findings?
 - Which operational strategies have to be developed for water management ?

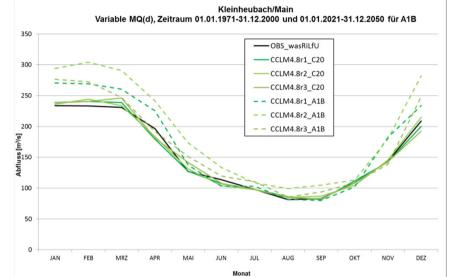
Introduction

- In search of answers: research programs at the LfU
 - The cooperation project KLIWA (<u>www.kliwa.de</u>): since 1999 with partners in Southern Germany: Baden-Württemberg, Rheinland-Pfalz, Bavaria and the German Meteorological Service
 - "Climate Change and Consequences for water management"

🕲 KLIWA

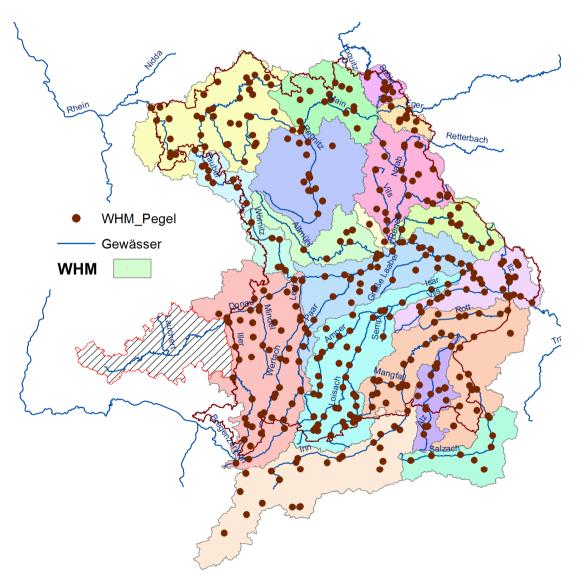

- The EU Interreg IVb project AdaptAlp (<u>www.adaptalp.org</u>):
 2008 2011
- "Adaptation to Climate Change in the Alpine Space"

How do we get there?


For analysis of future changes in hydrology \rightarrow regional climate projections coupled with hydrological modelling

Hydrological modelling for Bavaria WaSiM-ETH

- Our aims in hydrological modelling:
 - -water balance
 - -flow at gauges
 - -low/high flow indicators
 - -extremes? (can we model these)
 - -groundwater not really!



Changes of monthly mean flow at Kleinheubach/Main

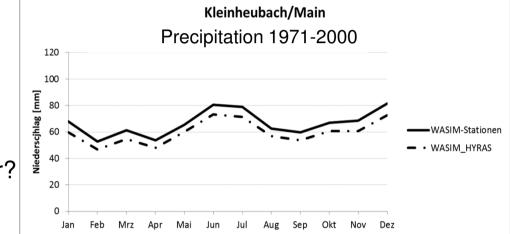
- \Rightarrow modelling for at least 30 years \rightarrow results 30 year means
- \Rightarrow extract robust changes for water balance (mean, high & low flows)
- \Rightarrow regional differences and challenges?

Modelling with WaSiM-ETH (about 90.000 km²)

19 models more than 400 gauges daily on a raster of 1x1 km

WaSiM-variants:

- → TOPMODEL (since 2001)
- → currently update to Richards 9.1.0;


© LfU / Referat 81 / Komischke

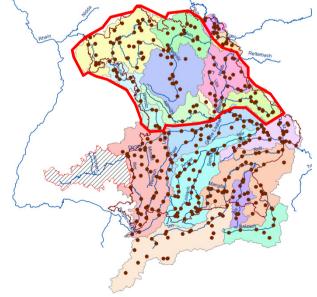
Assembling / update of hydrological models:

Assembling:

- measured meteo-data
- available areal data (land use...)
- model version
- homogenous parameterisation
- use of reservoirs and water transfer?

Update:

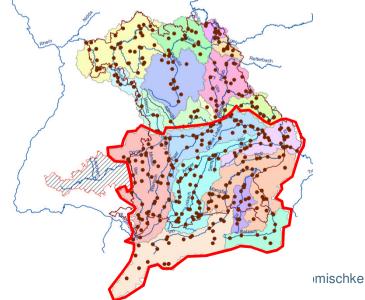
- new versions with bug fixes or better methods
- new questions or requirements
- · better or other data



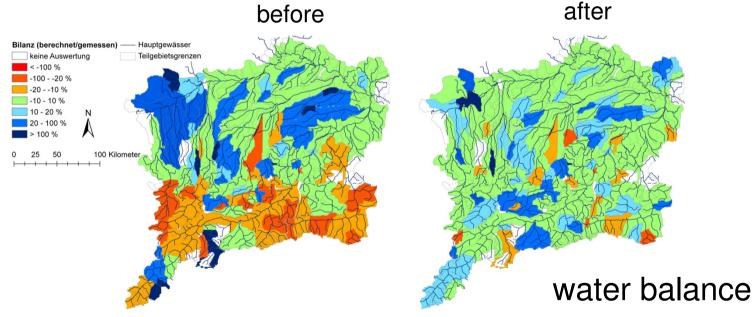
History of the hydrological modelling at the LfU

• First WaSiM-Models in 2001

TOPMODEL, meteorological stations with corrected precipitation, one model at a time (most work is commissioned); manual calibration

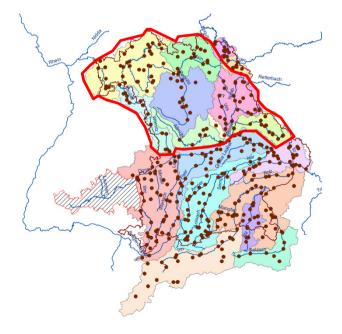

- ⇒ Nearly all river catchments north of Danube modelled until 2006
- Different parameterizations per model and one model at a time solution lead to jumps in the results at model boundaries

History of the hydrological modelling at the LfU


- With Southern Danube tributaries switch to Richards-Version in 2009; assembling and calibration of all 7 models at once!; manual calibration
- ⇒ Some challenges in the Alpine area and the Alpine foreland
 - Interpolation of precipitation ⇒ module regional superposition
 - Intensive water management and many lakes ⇒ incorporation of lakes and inflow/outflows in WaSiM

Interpolation of meteorology

Development of the module Regional Superposition for interpolation; here used for precipitation


 \Rightarrow different zones of interpolation with different combinations

History of the hydrological modelling at the LfU

- Update of all older TOPMODEL-Models to Richards and first modelling for Danube river until 2014; automated calibration
- \Rightarrow Update necessary:
- \circ $\,$ new version with bug fixes or better methods $\,$
- Richards instead of TOPMODEL
- o update of all models at once,
 - → same, more homogenous parameterization for all
- new references for meteorological input (DWD-HYRAS 1x1 km)

WaSiM User Conference 20.02.2014

Calibration and used criteria

Calibration of the hydrological models

• in the past:

manual to whole flow continuum (mean flow, low flows, high flows)

- present calibration (Willems & Stricker 2013, i.A. LfU): automated calibration with SCE-UA
 - -multithread: parallel optimisation in different catchments
 - multi criteria: NSC(lin/log) for overall flow and components (baseflow); plausible bandwidth of ETR

Parameter	Einheit	Modellsensitivität (qualitativ)	
Skalierung für Basisabfluss	[mm/h]	sehr hoch	
Speicherkonstante für Basisabfluss	[m]	sehr hoch	
Speicherkonstante Direktabfluss	[h]	mittel	
Speicherkonstante Interflow	[h]	mittel	
Entwässerungsdichte	[-]	mittel	
Anteil Direktabfluss aus der Schneeschmelze	[-]	gering	
Abnahmekonstante	[-]	hoch	
gesättigte hydraulischen Leitfähigkeit	[m/s]	meist gering	
Van-Genuchten Parameter	m ⁻¹	sehr hoch	
Van-Genuchten Parameter	[-]	mittel	
Van-Genuchten Parameter	[-]	sehr hoch © LfU	I / Refe

Tab. 9: Im Rahmen der Kalibrierung betrachtete Modellparameter und ihre Sensitivitäten

DLfU / Referat 81 / Komischke

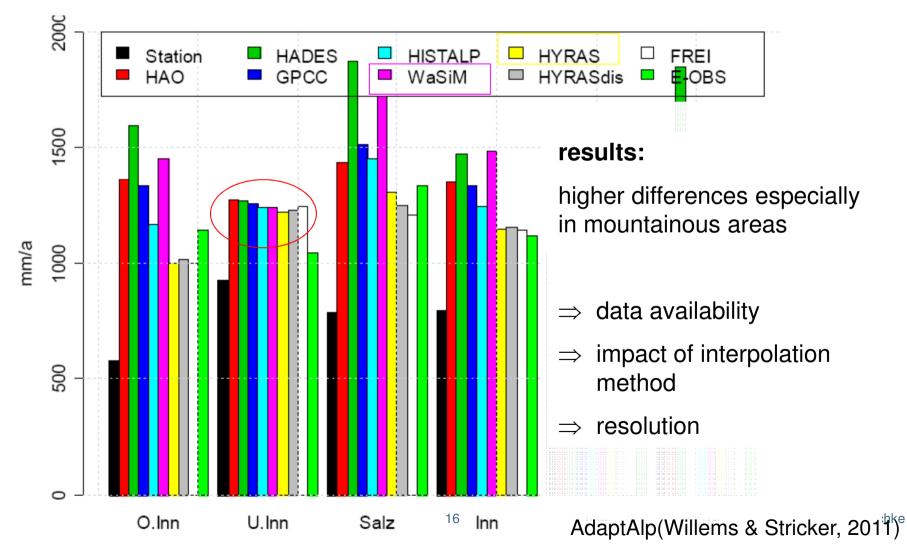
What criteria do we use for modelling:

⇒What kind of criteria shall you use?

⇒Which quality are reachable / what do we need for later use?

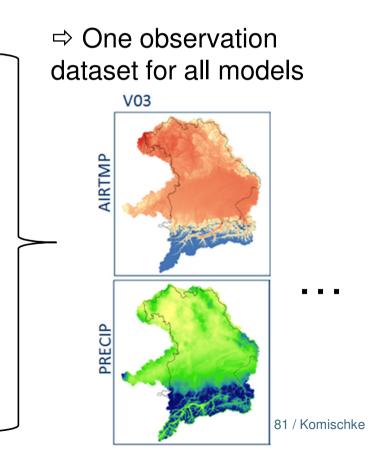
- water balance, NSC, KGF, water soil content, plausibility of the indicators
- correct reproduction of measured trends in the past
- computing time of model (most time, the demands were to high in the beginning)
- quality of input data, especially meteorology (e.g. correction of precipitation or method of interpolation)

TG	Pegel	Gewässer	Kat.	Zeitraum	MQrel	NSClin	NSClog	EVlin	EVlog	R2	KGElin	KGElog	MoNSClin	MoNSClog	Bemerkung
2	Kemmern	Main	1	01.01.1986-31.10.2006	-4.25	0.92	0.94	0.92	0.94	0.93	0.87	0.94	0.95	0.97	
3	Leucherhof	Baunach	2	01.01.1986-31.10.2006	-10.4	0.82	0.84	0.83	0.85	0.84	0.76	0.81	0.87	0.88	
4	Heinersdorf	Rodach	2	01.01.1986-31.10.2006	-0.98	0.83	0.87	0.83	0.88	0.83	0.84	0.84	0.92	0.94	
5	Coburg	Itz	3	01.01.1986-31.10.2006	-4.65	0.89	0.87	0.89	0.87	0.89	0.9	0.93	0.94	0.92	HW-Rückhalt
6	Schwürbitz	Main	2	01.01.1986-31.10.2006	-8.21	0.92	0.93	0.93	0.93	0.94	0.82	0.94	0.94	0.95	
7	Horb	Steinach	3	01.01.1986-31.10.2006	-6.44	0.87	0.9	0.87	0.9	0.9	0.75	0.94	0.92	0.93	
8	Unterlangenstadt	Rodach	2	01.01.1986-31.10.2006	-6.31	0.92	0.9	0.92	0.91	0.93	0.85	0.9	0.95	0.94	Trinkwasserentnahme
9	Neukenroth	Hasslach	3	01.01.1986-31.10.2006	-12.22	0.9	0.84	0.9	0.87	0.9	0.87	-0.61	0.93	0.89	Inhomogene Zeitreihe
10	Steinberg	Kronach	3	01.01.1986-31.10.2006	-9.53	0.88	0.78	0.88	0.81	0.88	0.86	0.31	0.92	0.89	
11	Wallenfels	Wilde Rodach	3	01.01.1986-31.10.2006	4.7	0.87	0.81	0.87	0.82	0.88	0.88	0.48	0.93	© Lt <mark>6.89</mark> f	keferat 81 / Komisch
12	Untersteinach	Schorgast	2	01.01.1986-31.10.2006	-3.15	0.8	0.85	0.8	0.85	0.83	0.74	0.92	0.89	0.91	

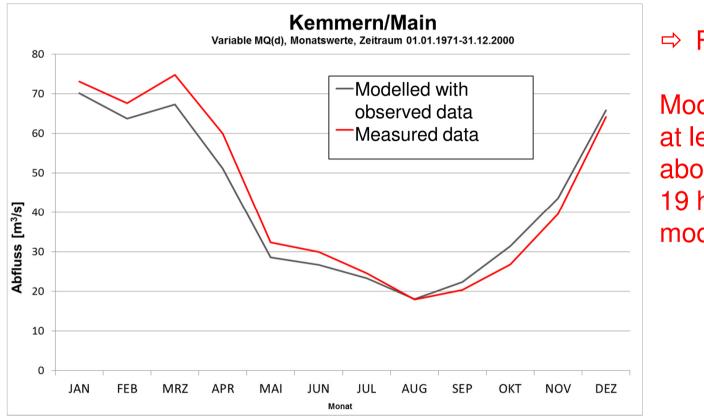

Tab. 19: WHM Oberer Main, Gütewerte der Validierung im Zeitraum 01.01.1986 – 31.10.2006, Simulation mit vorgeschaltetem Talsperrenmodell

Choosing the right observation data set

Comparison of different observation data sets precipitation *(yearly sums 1971-1990)*



Choosing the right observation data set

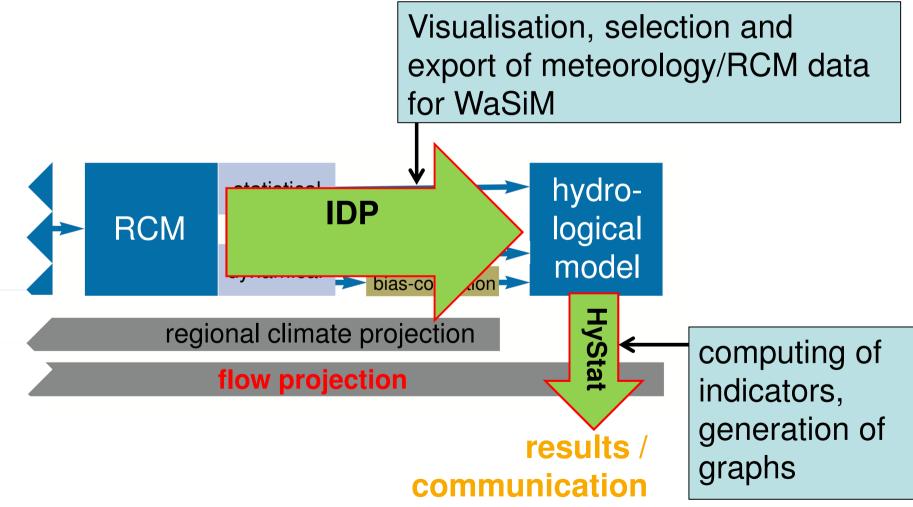

- Since 2001 / north of the Danube: meteorological stations, interpolated within WaSiM, <u>corrected</u> precipitation
- Southern tributaries to the Danube: meteorological stations, interpolated within WaSiM including regional superposition with <u>uncorrected</u> precipitation
- Update of hydrological models:

Already interpolated, observed raster data sets (HYRAS-DWD: <u>uncorrected</u> <u>precipitation</u>, temperature, humidity) and external interpolated wind & sunshine duration (Willems & Stricker 2013, i.A. LfU)

⇒ Results with 30 years observed data

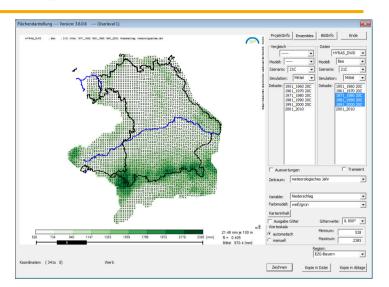
⇒ For Bavaria:

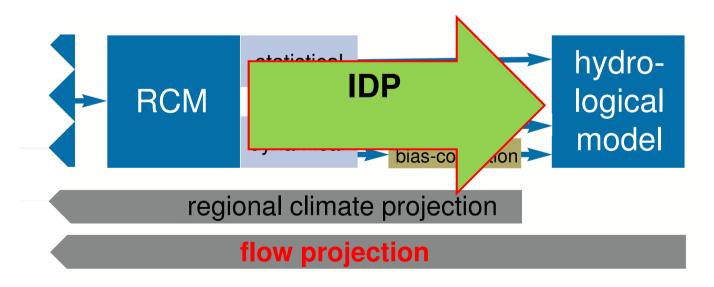
Modelled datasets of at least 30 years at about 400 gauges in 19 hydrological models


Monthly mean flow measured and modelled with observational data at the gauge Kemmern for 1971-2000

But having the model is not everything - WaSiM-ETH interfaces at the LfU -

The need to fit WaSiM into the model chain

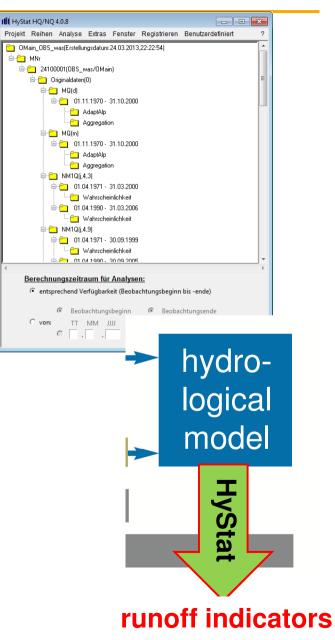




Interfaces for WaSiM:

Meteorological input data - IDP:

- all measured and RCM data we used so far, basic visualisation and analysis
- selection and output in WaSiM-ETH format



Interfaces for WaSiM:

Analysis of the modelling results - HyStat

- import of model results per gauge and projection: flow, meteorology, flow components, ETR/ETP
- statistical analysis, computing of indicators and graphs
- based on software for the hydrological service

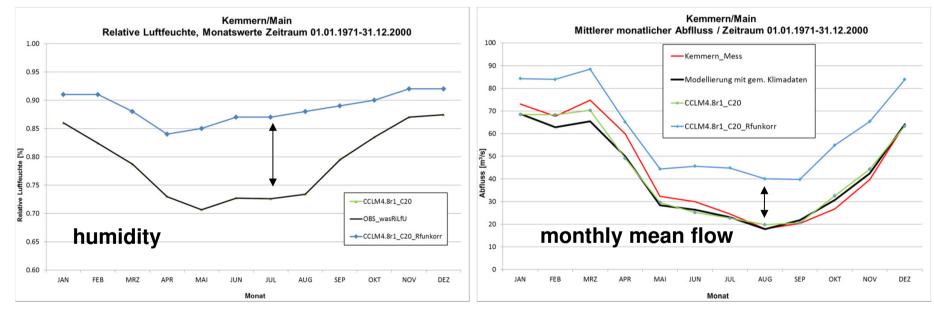
EZG-Nr Klima (Ab	kürzung) WaSiM-	Modellgebiet	Zeitschritt	Tag 💌	🔲 Eingaben aus WaSiM-St	euerdatei
24100002 CCLM4.8r	L OMain		Realisationsnummer	0	WaSiM-Datenverzeichnis au	ıswählen
WaSiM-Einzugsgebietsgrö	iße 1				WaSiM-Steuerdatei auswa	ihlen
Teilgebietsnummer tot_ave	erage				Teilgebiete aus Hystat_V Ableitungen addieren	ïewer
Zusatzinformation					Parameterliste:	
WaSiM-Versionsnummer			Auslass TG 1			*
Basismodellversion	Richards	ETR =	ETR + EI			
Kalibrierungszustand		Geeignet	für Auswertung	ja 👻		
Beeinflussung durch		Modellier	ung			-
Bemerkungen					Parameter:	
		D:\\	HyStat-Projekte∖OMa	in\0002 OMain CCL	M4.8r1 T	

WaSiM User Conference 20.02.2014

Bavarian Environment Agency

Present topics on our mind

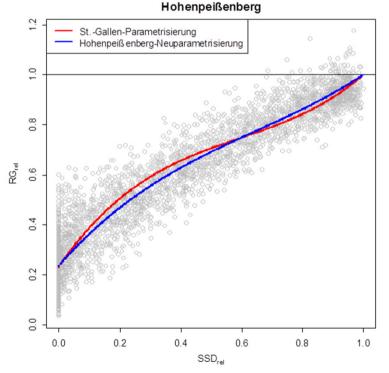
Present topics:


- Modelling with climate projections (some examples later)
- Due to bias-correction sensitivity of the hydrological model to meteorological input

Sensitivity of the hydrological model

• e.g. meteorology / humidity (⇒ ETR / flows)

⇒ How does my hydrological model react to bias in climate projections?


Bias humidity between 5 and 15 % \Rightarrow high differences in flow

 \Rightarrow From where on do I have to apply BC? \rightarrow sensitivity and plausibility hydrological model \Rightarrow How far can you apply BC?

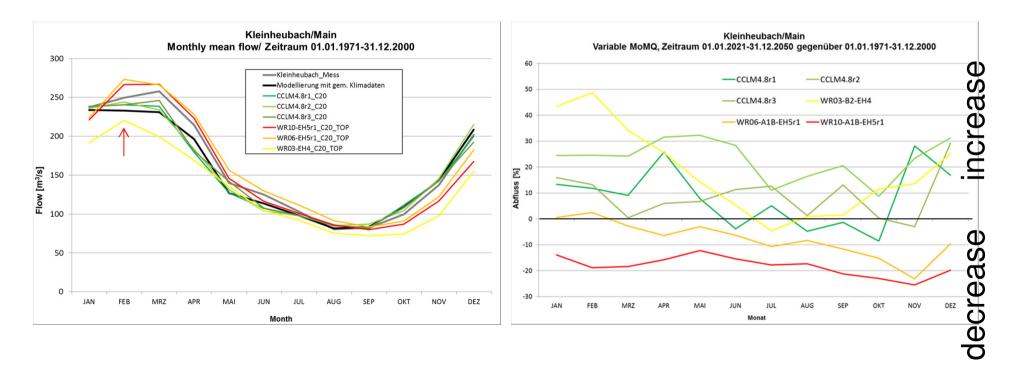
Present topics:

- Modelling with climate projections (examples later)
- Due to bias-correction sensitivity of the hydrological model to meteorological input
- Internal conversion of sunshine duration to global radiation

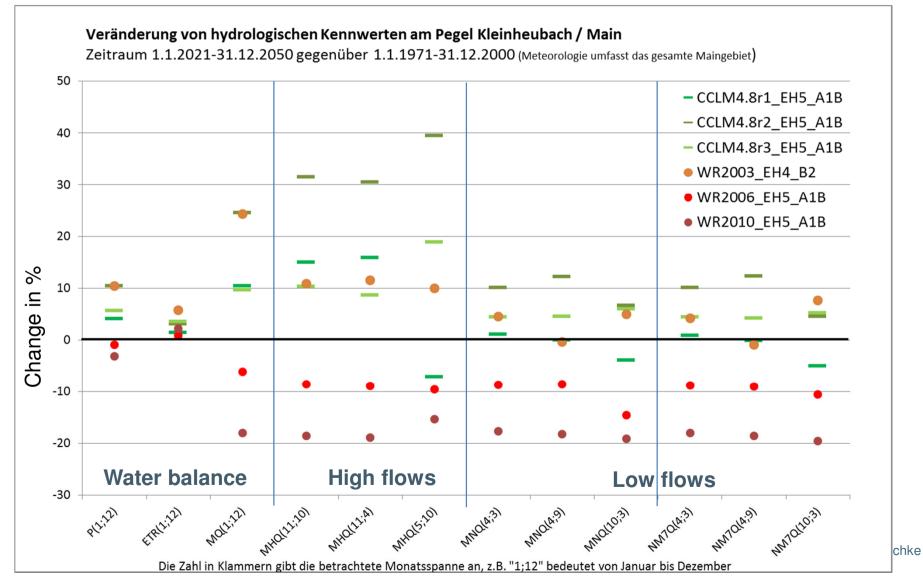
Relationship between relative sunshine duration and relative global radiation at the station Hohenpeißenberg, characterized through the WaSiM-standard parameterisation and a new parameterisation based on measured values

 Standard parameterisation for conversion of sunshine duration seems to overestimate global radiation for Bavaria

(Willems & Stricker 2013, i.A. LfU)


Example for results of hydrological modelling coupled with regional climate scenarios

Examples for results RCM and hydrological model


Plausibilty of the monthly mean flow for 1971-2000

Changes in the monthly mean flow 2021-2050 versus 1971-2000 in %

Changes in the hydrology of the Main catchment

WaSiM- Workshop 15.10.2013 LfU, Augsburg

- Organised and hosted by LfU
- 14 Participants
- Reports by WaSiM-users, suggestions for improvements to WaSiM, possibilities/options for implementation, discussion of some specific topics

Results of the WaSiM-WS 15.10.2014

- Suggestions for improvements (examples):
 - Interpolation of meteorological input: Using background fields (Hintergrundfelder) e.g. for wind
 - Conversion of sunshine duration into global radiation: Parameterisation of the conversion procedures in a way that is transparent for the user
 - Snow model, module: Need for improved modelling of snowmelt and snow accumulation
 - Evapotranspiration: Interest in alternative evaporation approaches (i.e. fewer input variables)
 - Reservoirs: Option of implementing the point in time at which a reservoir goes into operation
- Discussion (example)
 - Special parameterisation: Can a model be expected to model do "everything" or is it acceptable to have different parameterisations for different specific questions (e.g. peak flood flow)?

WaSiM User Conference 20.02.2014

Thank you for your attention!