Water-balance and runoff components in the Weser river basin simulated by WASIM-ETH - Validation by means of tritium balances

GIT HYDROS Consult GmbH

Hydrologie und Geomatik für die Wasserwirtschaft

Franz-Josef Kern, hydrosconsult (Freiburg); *franz-josef.kern@hydrosconsult.de* Peter Krahe, BfG (Koblenz); *krahe@bafg.de*

with contributions

- Peter Hoffmann (diploma theses)
- Christian Gauger (diploma theses)
- Philipp Saile (work experience)
- Paul Königer (TRIBIL-support)
- Jörg Schulla (WASIM-ETH)

Report

Kern F.-J., Hoffmann P., Saile P. (2008): TRIBIL_2 – Tritiumbilanz deutscher Stromgebiete (Weser). Final Report Institut für Hydrology by order of Bundesanstalt für Gewässerkunde

WaSiM user conference 20 – 21 February 2014, TU Munich

- 1. Background of the work
- 2. Overview Weser river basin
- 3. View on selected parametrisation issues
- 4. DIFGA2000 & TRIBIL contribution of mass transport to water balance models
- 5. Modelling results
- 6. Conclusion

 Build up hydrological monitoring and prediction systems by supporting the WMO initiative of "seamless prediction"

Source: EEA

Missions with regard to "water cycle"

Case study "River Weser basin"

Weser river basin

- area 46000 km² (Imax= 400 km, bmax=200 km)
- grid with 2 and 1 km² respectively
- daily timesteps for the hydrological years of 1952 to 2005
- differentiation into low mountain range in the south, lowlands and tide influences towards the coast of North Sea

Soil parametrisation using unsat-zone concept

GIT HYDROS Consult GmbH

BÜK1000 soil information of BGR

- detailed map in the scale 1:1 mio
- land use differentiated soil profiles (forest and arable land)
- horizon differentiated soil properties
- vanGenuchten soil water parameters according to HYPRES
- addition of ground water layers where appropriate

330323	23 {method= MultipleHorizons;							
	#FCap = 28.17	; mSB = 42.6; k	sat_topmodel =	6.94E-7; suctio	n = 426;			
PMacroThresh	= 0.8;							
MacroCapacity	= 13;							
CapacityRedu	= 0.7;							
MacroDepth	= 0.5;							
horizon	= 1	2	3	4	5	б	7;	
Name	= Ah	emGo	zemGr	zemGr	zemGr	zemGr	GW1;	
ksat	= 0.00002000	0.00002430	0.00000578	0.00000578	0.0000578	0.0000578	0.0000578;	
k_recession	= 0.92	0.9200	0.9200	0.9200	0.9200	0.9200	0.92;	
theta_sat	= 0.45	0.4720	0.4140	0.4140	0.4140	0.4140	0.35;	
theta_res	= 0.1	0.1000	0.1000	0.1000	0.1000	0.1000	0.1;	
alpha	= 2.7	2.0000	2.3000	2.3000	2.3000	2.3000	2.3;	
Par_n	= 1.17	1.1500	1.1000	1.1000	1.1000	1.1000	1.1;	
Par_tau	= 0.5	0.5000	0.5000	0.5000	0.5000	0.5000	0.5;	
thickness	= 0.1	0.4000	0.5000	0.5000	0.3000	0.2000	1;	
layers	= 1	1	1	1	1	1	30;	
}								
							一、日本七場	
	a second							

Vegetation

Hydrologie und Geomatik für die Wasserwirtschaft

- CORINE (CLC2000)
- mapping on 12 land use classes
- monthly parametrisation (Albedo, rsc, rs_interception, rs_evaporation, LAI, z0, vcf, root depth, AltDep)

Gruppe	Bezeichnung	Zugeordnete CORINE-Einheiten	b
A1	Dicht bebaute Siedlungsflächen	1.1.1, 1.2.1, 1.2.2, 1.2.3	
A2	Locker bebaute Siedlungsflächen	1.1.2, 1.2.4, 1.4.1, 1.4.2	a
B1	Ackerland	2.1.1	0
B2	Grünland	2.3.1, 3.2.1	5
B3	Dauerkulturen, Wein- und Obstbau	2.2.1, 2.2.2	۲
B4	Verschiedene heterogene landw. Flächen	2.4.2, 2.4.3, 3.2.2, 3.2.4	
C1	Laubwälder	3.1.1	t
C2	Nadelwälder	3.1.2	
C3	Mischwälder	3.1.3	C
C4	Flächen ohne bzw. nur geringer Vegetation	1.3.1, 1.3.2, 1.3.3, 3.3.1, 3.3.2, 3.3.3	n
D1	Feuchtflächen, Torfmoore	4.1.1, 4.1.2, 4.2.1, 4.2.3	v
D2	Offene Wasserflächen, Gewässerläufe	5.1.1, 5.1.2, 5.2.1, 5.2.2	v

build up areas

arable land grassland permanent plantations

forests

isterl.visibilit

open spaces with little or no vegetation wetlands water bodies

Hydrometeorology

Hydrologie und Geomatik für die Wasserwirtschaft

 Precipitation depth as daily grid of REGNIE rainfall data with monthly correction with a mean of +8%/y

station data

- temperature
- relative sunshine duration

regional altitude dependent regionalisation

- wind speed based on wind force station data (Häckel 1993)
- relative humidity

Model Calibration

Model performance tested according to

- visual comparison of hydrographs
- (log) coefficient of determination (d/m)
- (log) model efficiency (Nash Sutcliffe) (d/m)
- water balance
- volume error
- plausibility of water balance components
- runoff components (DIFGA2000)
- (mass transport Tritium)

für die Wasserwirtschaft

Accompanying modelling – DIFGA2000

Schwarze R., Beudert B.(2009)

lister].visibility

Simulation results

Hydrologie und Geomatik

für die Wasserwirtschaft 10 9 8 7 Niederschlag [mm/Tag] Abfluss [mm/Tag] 6 5 4 3 2 1 0 01.11.95 01.11.98 01.05.99 01.11.99 01.05.00 01.11.00 01.05.01 01.11.01 01.05.02 01.11.02 01.05.03 01.11.03 01.05.04 01.11.04 01.05.05 01.05.97 01.11.97 01.05.98 Zeit [d] Abfluss gemessen - Gesamtabfluss Niederschlag Makroporen akt. Verdunstung -Basisabfluss Direktabfluss — Zwischensbfluss

gauging station Intschede, daily values 1996-2005 (validation time per.)

gauging station Intschede, monthly values 1996-2005 (validation time per.)

Contribution of mass transport to water balance models

WASIM – substance transport with Tritium

GIT HYDROS Consult GmbH

Accompanying modelling – TRIBIL

Hydrologie und Geomatik für die Wasserwirtschaft

TN TV TKTA TW TD Diff HSD TS TGSA TIG TOG (1-G)*TS TGSN TU G*TS TGTA TGTN Gesättigte Zone Königer P. (2004)

T = Tritium in storages in [Bq/I]

N = precipitation, V = transpiration, S = Percolation

Diff_HSO = change in surface soil water storage (snow)

Weser4

- G = percentage of base flow
- GS + GT = fast and slow groundwater storage
- A = active, runoff generating; N= not runoff contributing

Model results

Gütemaß [-]	FULDA	WERRA	WESER1	WESER2	WESER3	ALLER	WESER4	WESER5	Hydrologie und Geomatik
R ²	0,89	0,88	0,89	0,85	0,87	0,87	0,77	0,77	für die Wasserwirtschaft
	0,78	0,77	0,77	0,72	0,76	0,77	0,73	0,73	
E	0,89	0,88	0,89	0,84	0,85	0,81	0,7	0,59	
Tank With	-2,31	-2,96	0,77	-2,12	-0,58	-4,71	-0,76	-0,94	

16 1	FULDA	WERRA	WESER1	WESER2	WESER3	ALLER	WESER4	WESER5	Rheine	Geeste	Emden
HMQ [mm]	283,78	350,57	305,73	314,1	275,34	229,59	269,18	268,3	307	295,00	286
Tau GW [a]	10,14	6,40	7,27	7,21	9,01	11,15	8,92	11,79	11,8	10,20	12,6
Tau ³ H [a]	6,48	4,71	5,17	5,14	5,99	6,87	5,95	7,11	7,11	6,50	7,39
Tau GW		62.10	44,50	43.30	91,10	92.00		92.50	11.8	10.20	12.6

lusterl.visibility <

time series 1963 – 2005 (WASIM/Königer (2004) including influence of nuclear power plants

Time series analysis

GIT HYDROS Consult GmbH

Conclusions

- model data for 1k und 2k prepared for 1952 2005
- model results for 1K and 2k model very similar
- some errors in WASIM-ETH were fixed with the support of J. Schulla
- diverse model concepts testet and several parameter sensitivity analysis conducted
- multifactorial calibration and good agreement with concepts using runoff segmentation and substance transport
- predominant good fit for the whole Weser basin
- trends detected according to expectations in climate change, e.g. increasing temperature and transpiration, increasing winter precipitation in most subcatchments, decreasing water equivalent of snow cover

Conclusions

- substance transport in WASIM-ETH suitable in principle - could be a valuable additional calibration or validation module
- coupled water-balance and mass-transport models together with isotope-tracer measurements can make a valuable contribution to the characterisation of subsurface water storage
- but substance transport of ³H unsatisfactory at that time because of software shortcomings
- to model environmental isotope tracers like ³H, ²H or ¹⁸O, some processes like isotope fractionation during evapo(transpiration) should be accounted for

Hydrologie und Geomatik für die Wasserwirtschaft

Thanks to the audience...

Special view on parametrisation issues

- 1. Parametrisation in general
- 2. Topography
- 3. Soil
- 4. Vegetation
- 5. Hydrometeorology

Parametrisation

- Control-File
- Areal data as Grids (ASCII/Binary)
- Time Series data as ASCII data series

Abflussspend	e (mm/d)				1	COX.	
YY	MM	DD	HH	103	17618	1202	19162
YY	MM	DD	HH	-123045.81	-111925.07	August Margan	
YY	MM	DD	НН	43880.46	132013.43		
YY	MM	DD	НН	44100206	45900208		1
1951	1	1	24	0.9563	0.6326	-9999	0.6808
1951	1	2	24	0.9563	0.7258	-9999	0.7124
1951	1	3	24	0.9563	0.5394	-9999	0.5862
1951	1	4	24	0.9563	0.5689	-9999	0.5726
1951	1	5	24	0.9563	0.564	-9999	0.5907
1951	1	6	24	0.9563	0.7111	-9999	0.78
1951	1	7	24	0.9563	0.8925	-9999	0.9875
1951	1	8	24	0.9563	1.0789	-9999	1.0641
1951	1	9	24	0.9563	1.3192	-9999	1.3211
1951	1	10	24	1.1324	1.5938	-9999	1.5871
1951	1	11	24	1.015	1.4761	-9999	1.4834
1951	1	12	24	0.8976	1.2996	-9999	1.3662
1951	1	13	24	0.9563	1.1328	-9999	1.1633
1951	1	14	24	0.9563	1.1377	-9999	1.1408
1951	1	15	24	0.8976	1.2947	-9999	1.3572
1951	1	16	24	0.9563	1.2653	-9999	1.4744
1951	1	17	24	0.8976	1.2113	-9999	1.3707
1951	1	18	24	1.9293	1.5693	-9999	1.8802
1951	1	19	24	2.7682	2.2755	-9999	2.5926
1951	1	20	24	3.5147	2.8787	-9999	2.9579
					Start a		
					100 C	and the second of the	

Topography

Diverse datasets

- DGM1000 des BKG
- 30"-DEM USGS (as 500 or 1000 m-DEM also base data in HAD)
- SRTM (Shuttle Radar Topography Mission)

Aggregation into 1k and 2k grids respectively

Time series analysis (homogenity)

Hydrologie und Geomatik für die Wasserwirtschaft

Trend (Mann-Kendall)

- nonparametric Test
- no assumption on normal distribution
- no assumption on the sort of trend
- significance level 95%

Significant trends for Temperature, Precipitation, actual and potential transpiration in many subcatchments

jump test (Pettitt)

- nonparametric Test
- significance level 95%

Significant jumps around 1987 in several catchments for different parameters