Future glacier and runoff changes in the Upper Susitna basin, Alaska

Julianna L. Braun1,2, Anna K. Liljedahl3, Regine ME Hock1, Andrew Bliss1, Gabriel J. Wolken1, Jörg Schulla5

1 Geophysical Institute, University of Alaska, Fairbanks, USA, juliana.braun@gi.alaska.edu, 2 Dept. of Geography, Faculty of Geosciences, Ludwig-Maximilians-University, Munich, Germany
3 Water and Environmental Research Center & International Arctic Research Center, University of Alaska, Fairbanks, USA
4 Alaska Geological Survey, Dept. of Natural Resources, Fairbanks, USA
5 Hydrology Software Consulting, Zurich, Switzerland

Background and Purpose

➢ The hydroelectric power potential of the Susitna River is being explored to conform with the Alaska Legislature directive* to generate 50% of State electricity from renewable and alternative sources by 2025.

➢ The catchment of the reservoir in the upper Susitna watershed (13,289 km², 450-4000 m a.s.l.) is 4% glaciated and is characterized by sparse vegetation, discontinuous permafrost, and little human development. Glaciers, permafrost, and the water cycle are expected to change in response to anticipated future atmospheric warming by the end of this century, thus impacting water yields to the hydroelectric reservoir.

➢ Our method combines field measurements and hydrological modeling to improve runoff estimates for the proposed 83 km² and 63 km long reservoir of the Susitna-Watana Hydroelectric Project.

Soil temperature calibration

➢ Soil temperatures are influenced by the depth of the organic soil layers as well as by the insulating effect of a sufficient blanket of snow.

➢ Since heat transfer through snow is not yet implemented in WaSiM, the upper boundary condition is adjusted by land cover specific n-factors.

➢ The initial conditions are more important lower in the profile, since the influence of the dynamically changing upper air temperature (corrected by n-factor) decreases with depth. The input of a lower boundary grid may significantly reduce model spin-up times.

Methodology

➢ The influence of glacier discharge is accounted for by the integrated dynamic glacier module which calculates glacier mass balance and, by applying a simple volume-area scaling (BAHR et al. 1997), enables the simulation of glacier advance or retreat. This allows us to specifically evaluate the role of glacier melt on river runoff during the lifespan of the proposed dam.

➢ The isolating affect of debris is accounted for by the input of a debris grid.

➢ The widespread discontinuous and continuous permafrost and it’s influence on the basin’s hydrology is simulated by the 1-D heat transfer module, which calculates the vertical heat fluxes in and out of the soil layers based on the first and second laws of thermodynamics.

Meteorological forcing

➢ The calibration period 1981 – 1983 and the validation period 2012 – 2014 are forced with daily temperature and precipitation data. The Basin was sub-divided into three regions in order to receive a good spatio-temporal representation of precipitation in the lower lying (yellow) areas based on measured data while achieving higher effective precipitation values in the glaciated sub-basins (purple and blue) by the application of lapse rates.

Model Results - Calibration

➢ The model is not only capable of reproducing historic discharge values but it enables a better understanding of the diverse hydrologic processes in the Upper Susitna basin and their interaction.

➢ Once calibration and validation is completed, the physically sound representation of these processes is expected to lead to enhanced runoff estimates for the proposed Susitna-Watana Dam when driven by climate projections.

Conclusion and Outlook

➢ The funding by the Alaska Energy Authority (AW-38512 awarded to DGGS/G. Wolken) is gratefully acknowledged.

➢ Further thanks go to S. Manchero, E. Jafarof from the Permafrost Lab, Geophysical Institute, as well as R. D. Water and Environmental Research Center.

➢ The calibration period 1981 – 1983 and the validation period 2012 – 2014 is forced with monthly temperature and precipitation data.

➢ The Basin was sub-divided into three regions in order to receive a good spatio-temporal representation of precipitation in the lower lying (yellow) areas based on measured data while achieving higher effective precipitation values in the glaciated sub-basins (purple and blue) by the application of lapse rates.

Acknowledgements

➢ The model is not only capable of reproducing historic discharge values but it enables a better understanding of the diverse hydrologic processes in the Upper Susitna basin and their interaction.

➢ Once calibration and validation is completed, the physically sound representation of these processes is expected to lead to enhanced runoff estimates for the proposed Susitna-Watana Dam when driven by climate projections.

References


➢ JÖRGENSON et al. (2008), Permafrost Characteristics of Alaska, Institute of Northern Engineering, University of Alaska Fairbanks, December update to July NICOP map.

➢ The initial conditions are more important lower in the profile, since the influence of the dynamically changing upper air temperature (corrected by n-factor) decreases with depth. The input of a lower boundary grid may significantly reduce model spin-up times.

➢ Since heat transfer through snow is not yet implemented in WaSiM, the upper boundary condition is adjusted by land cover specific n-factors.

➢ The initial conditions are more important lower in the profile, since the influence of the dynamically changing upper air temperature (corrected by n-factor) decreases with depth. The input of a lower boundary grid may significantly reduce model spin-up times.